Home
Main website
Display Sidebar
Hide Ads
Recent Changes
View Source:
bc(1)
Edit
PageHistory
Diff
Info
LikePages
bc !!!bc NAME SYNTAX VERSION DESCRIPTION ENVIRONMENT VARIABLES DIAGNOSTICS BUGS AUTHOR ACKNOWLEDGEMENTS ---- !!NAME bc - An arbitrary precision calculator language !!SYNTAX __bc__ [[ __-hlwsqv__ ] [[long-options] [[ ''file ...'' ] !!VERSION This man page documents GNU bc version 1.06. !!DESCRIPTION __bc__ is a language that supports arbitrary precision numbers with interactive execution of statements. There are some similarities in the syntax to the C programming language. A standard math library is available by command line option. If requested, the math library is defined before processing any files. __bc__ starts by processing code from all the files listed on the command line in the order listed. After all files have been processed, __bc__ reads from the standard input. All code is executed as it is read. (If a file contains a command to halt the processor, __bc__ will never read from the standard input.) This version of __bc__ contains several extensions beyond traditional __bc__ implementations and the POSIX draft standard. Command line options can cause these extensions to print a warning or to be rejected. This document describes the language accepted by this processor. Extensions will be identified as such. __OPTIONS__ -h, --help Print the usage and exit. -i, --interactive Force interactive mode. -l, --mathlib Define the standard math library. -w, --warn Give warnings for extensions to POSIX __bc__. -s, --standard Process exactly the POSIX __bc__ language. -q, --quiet Do not print the normal GNU bc welcome. -v, --version Print the version number and copyright and quit. __NUMBERS__ The most basic element in __bc__ is the number. Numbers are arbitrary precision numbers. This precision is both in the integer part and the fractional part. All numbers are represented internally in decimal and all computation is done in decimal. (This version truncates results from divide and multiply operations.) There are two attributes of numbers, the length and the scale. The length is the total number of significant decimal digits in a number and the scale is the total number of decimal digits after the decimal point. For example: .000001 has a length of 6 and scale of 6. 1935.000 has a length of 7 and a scale of 3. __VARIABLES__ Numbers are stored in two types of variables, simple variables and arrays. Both simple variables and array variables are named. Names begin with a letter followed by any number of letters, digits and underscores. All letters must be lower case. (Full alpha-numeric names are an extension. In POSIX __bc__ all names are a single lower case letter.) The type of variable is clear by the context because all array variable names will be followed by brackets ([[]). There are four special variables, __scale, ibase, obase,__ and __last__. __scale__ defines how some operations use digits after the decimal point. The default value of __scale__ is 0. __ibase__ and __obase__ define the conversion base for input and output numbers. The default for both input and output is base 10. __last__ (an extension) is a variable that has the value of the last printed number. These will be discussed in further detail where appropriate. All of these variables may have values assigned to them as well as used in expressions. __COMMENTS__ Comments in __bc__ start with the characters __/*__ and end with the characters __*/__. Comments may start anywhere and appear as a single space in the input. (This causes comments to delimit other input items. For example, a comment can not be found in the middle of a variable name.) Comments include any newlines (end of line) between the start and the end of the comment. To support the use of scripts for __bc__, a single line comment has been added as an extension. A single line comment starts at a __#__ character and continues to the next end of the line. The end of line character is not part of the comment and is processed normally. __EXPRESSIONS__ The numbers are manipulated by expressions and statements. Since the language was designed to be interactive, statements and expressions are executed as soon as possible. There is no A simple expression is just a constant. __bc__ converts constants into internal decimal numbers using the current input base, specified by the variable __ibase__. (There is an exception in functions.) The legal values of __ibase__ are 2 through 16. Assigning a value outside this range to __ibase__ will result in a value of 2 or 16. Input numbers may contain the characters 0-9 and A-F. (Note: They must be capitals. Lower case letters are variable names.) Single digit numbers always have the value of the digit regardless of the value of __ibase__. (i.e. A = 10.) For multi-digit numbers, __bc__ changes all input digits greater or equal to ibase to the value of __ibase__-1. This makes the number __FFF__ always be the largest 3 digit number of the input base. Full expressions are similar to many other high level languages. Since there is only one kind of number, there are no rules for mixing types. Instead, there are rules on the scale of expressions. Every expression has a scale. This is derived from the scale of original numbers, the operation performed and in many cases, the value of the variable __scale__. Legal values of the variable __scale__ are 0 to the maximum number representable by a C integer. In the following descriptions of legal expressions, ''name'' and an array variable is specified as ''name''[[''expr''] Unless specifically mentioned the scale of the result is the maximum scale of the expressions involved. - expr The result is the negation of the expression. ++ var The variable is incremented by one and the new value is the result of the expression. -- var The variable is decremented by one and the new value is the result of the expression. var ++ The result of the expression is the value of the variable and then the variable is incremented by one. var -- The result of the expression is the value of the variable and then the variable is decremented by one. expr + expr The result of the expression is the sum of the two expressions. expr - expr The result of the expression is the difference of the two expressions. expr * expr The result of the expression is the product of the two expressions. expr / expr The result of the expression is the quotient of the two expressions. The scale of the result is the value of the variable __scale__. expr % expr The result of the expression is the scale__ digits. That result is used to compute a-(a/b)*b to the scale of the maximum of __scale__+scale(b) and scale(a). If __scale__ is set to zero and both expressions are integers this expression is the integer remainder function. expr ^ expr The result of the expression is the value of the first raised to the second. The second expression must be an integer. (If the second expression is not an integer, a warning is generated and the expression is truncated to get an integer value.) The scale of the result is __scale__ if the exponent is negative. If the exponent is positive the scale of the result is the minimum of the scale of the first expression times the value of the exponent and the maximum of __scale__ and the scale of the first expression. (e.g. scale(a^b) = min(scale(a)*b, max( __scale,__ scale(a))).) It should be noted that expr^0 will always return the value of 1. ( expr ) This alters the standard precedence to force the evaluation of the expression. var = expr The variable is assigned the value of the expression. var This is equivalent to Relational expressions are a special kind of expression that always evaluate to 0 or 1, 0 if the relation is false and 1 if the relation is true. These may appear in any legal expression. (POSIX bc requires that relational expressions are used only in if, while, and for statements and that only one relational test may be done in them.) The relational operators are expr1 The result is 1 if expr1 is strictly less than expr2. expr1 The result is 1 if expr1 is less than or equal to expr2. expr1 The result is 1 if expr1 is strictly greater than expr2. expr1 The result is 1 if expr1 is greater than or equal to expr2. expr1 == expr2 The result is 1 if expr1 is equal to expr2. expr1 != expr2 The result is 1 if expr1 is not equal to expr2. Boolean operations are also legal. (POSIX __bc__ does NOT have boolean operations). The result of all boolean operations are 0 and 1 (for false and true) as in relational expressions. The boolean operators are: !expr The result is 1 if expr is 0. expr The result is 1 if both expressions are non-zero. expr || expr The result is 1 if either expression is non-zero. The expression precedence is as follows: (lowest to highest) || operator, left associative This precedence was chosen so that POSIX compliant __bc__ programs will run correctly. This will cause the use of the relational and logical operators to have some unusual behavior when used with assignment expressions. Consider the expression: a = 3 Most C programmers would assume this would assign the result of bc__ is assign the value 3 to the variable __ There are a few more special expressions that are provided in __bc__. These have to do with user defined functions and standard functions. They all appear as __name''__(__''parameters''__)__ __ length ( expression ) The value of the length function is the number of significant digits in the expression. read ( ) The read function (an extension) will read a number from the standard input, regardless of where the function occurs. Beware, this can cause problems with the mixing of data and program in the standard input. The best use for this function is in a previously written program that needs input from the user, but never allows program code to be input from the user. The value of the read function is the number read from the standard input using the current value of the variable __ibase__ for the conversion base. scale ( expression ) The value of the scale function is the number of digits after the decimal point in the expression. sqrt ( expression ) The value of the sqrt function is the square root of the expression. If the expression is negative, a run time error is generated. __STATEMENTS__ Statements (as in most algebraic languages) provide the sequencing of expression evaluation. In __bc__ statements are executed __bc__. In fact, both a semicolon and a newline are used as statement separators. An improperly placed newline will cause a syntax error. Because newlines are statement separators, it is possible to hide a newline by using the backslash character. The sequence __bc__ as whitespace instead of a newline. A statement list is a series of statements separated by semicolons and newlines. The following is a list of __bc__ statements and what they do: (Things enclosed in brackets ([[]) are optional parts of the statement.) expression This statement does one of two things. If the expression starts with obase__. The legal values for __obase__ are 2 through BC_BASE_MAX. (See the section LIMITS.) For bases 2 through 16, the usual method of writing numbers is used. For bases greater than 16, __bc__ uses a multi-character digit method of printing the numbers where each higher base digit is printed as a base 10 number. The multi-character digits are separated by spaces. Each digit contains the number of characters required to represent the base ten value of __bc__, printing a number causes the side effect of assigning the printed value to the special variable __last__. This allows the user to recover the last value printed without having to retype the expression that printed the number. Assigning to __last__ is legal and will overwrite the last printed value with the assigned value. The newly assigned value will remain until the next number is printed or another value is assigned to __last__. (Some installations may allow the use of a single period (.) which is not part of a number as a short hand notation for for __last__.) string The string is printed to the output. Strings start with a double quote character and contain all characters until the next double quote character. All characters are take literally, including any newline. No newline character is printed after the string. __print__ list The print statement (an extension) provides another method of output. The last__. Strings in the print statement are printed to the output and may contain special characters. Special characters start with the backslash character (). The special characters recognized by __bc__ are __ { statement_list } This is the compound statement. It allows multiple statements to be grouped together for execution. __if__ ( expression ) statement1 [[__else__ statement2] The if statement evaluates the expression and executes statement1 or statement2 depending on the value of the expression. If the expression is non-zero, statement1 is executed. If statement2 is present and the value of the expression is 0, then statement2 is executed. (The else clause is an extension.) __while__ ( expression ) statement The while statement will execute the statement while the expression is non-zero. It evaluates the expression before each execution of the statement. Termination of the loop is caused by a zero expression value or the execution of a break statement. __for__ ( [[expression1] ; [[expression2] ; [[expression3] ) statement The for statement controls repeated execution of the statement. Expression1 is evaluated before the loop. Expression2 is evaluated before each execution of the statement. If it is non-zero, the statement is evaluated. If it is zero, the loop is terminated. After each execution of the statement, expression3 is evaluated before the reevaluation of expression2. If expression1 or expression3 are missing, nothing is evaluated at the point they would be evaluated. If expression2 is missing, it is the same as substituting the value 1 for expression2. (The optional expressions are an extension. POSIX __bc__ requires all three expressions.) The following is equivalent code for the for statement: expression1; while (expression2) { statement; expression3; } __break__ This statement causes a forced exit of the most recent enclosing while statement or for statement. __continue__ The continue statement (an extension) causes the most recent enclosing for statement to start the next iteration. __halt__ The halt statement (an extension) is an executed statement that causes the __bc__ processor to quit only when it is executed. For example, __bc__ to terminate because the halt is not executed. __return__ Return the value 0 from a function. (See the section on functions.) __return__ ( expression ) Return the value of the expression from a function. (See the section on functions.) As an extension, the parenthesis are not required. __PSEUDO STATEMENTS__ These statements are not statements in the traditional sense. They are not executed statements. Their function is performed at __limits__ Print the local limits enforced by the local version of __bc__. This is an extension. __quit__ When the quit statement is read, the __bc__ processor is terminated, regardless of where the quit statement is found. For example, __bc__ to terminate. __warranty__ Print a longer warranty notice. This is an extension. __FUNCTIONS__ Functions provide a method of defining a computation that can be executed later. Functions in __bc__ always compute a value and return it to the caller. Function definitions are __ __ define__ ''name'' __(__ ''parameters'' __) {__ ''newline auto_list statement_list'' __} __A function call is just an expression of the form name''__(__''parameters''__)____ Parameters are numbers or arrays (an extension). In the function definition, zero or more parameters are defined by listing their names separated by commas. Numbers are only call by value parameters. Arrays are only call by variable. Arrays are specified in the parameter definition by the notation name''__[[]__ __ The ''auto_list'' is an optional list of variables that are for ''auto__ ''name'', ... ; ''name'' is the name of an auto variable. Arrays may be specified by using the same notation as used in parameters. These variables have their values pushed onto a stack at the start of the function. The variables are then initialized to zero and used throughout the execution of the function. At function exit, these variables are popped so that the original value (at the time of the function call) of these variables are restored. The parameters are really auto variables that are initialized to a value provided in the function call. Auto variables are different than traditional local variables because if function A calls function B, B may access function A's auto variables by just using the same name, unless function B has called them auto variables. Due to the fact that auto variables and parameters are pushed onto a stack, __bc__ supports recursive functions. The function body is a list of __bc__ statements. Again, statements are separated by semicolons or newlines. Return statements cause the termination of a function and the return of a value. There are two versions of the return statement. The first form, __return__ __return (__ ''expression'' __)__ __return (0)__ __ Functions also change the usage of the variable __ibase__. All constants in the function body will be converted using the value of __ibase__ at the time of the function call. Changes of __ibase__ will be ignored during the execution of the function except for the standard function __read__, which will always use the current value of __ibase__ for conversion of numbers. As an extension, the format of the definition has been slightly relaxed. The standard requires the opening brace be on the same line as the __define__ keyword and all other parts must be on following lines. This version of __bc__ will allow any number of newlines before and after the opening brace of the function. For example, the following definitions are legal. define d (n) { return (2*n); } define d (n) { return (2*n); } __MATH LIBRARY__ If __bc__ is invoked with the __-l__ option, a math library is preloaded and the default scale is set to 20. The math functions will calculate their results to the scale set at the time of their call. The math library defines the following functions: s (''x'') The sine of x, x is in radians. c (''x'') The cosine of x, x is in radians. a (''x'') The arctangent of x, arctangent returns radians. l (''x'') The natural logarithm of x. e (''x'') The exponential function of raising e to the value x. j (''n,x'') The bessel function of integer order n of x. __EXAMPLES__ In /bin/sh, the following will assign the value of pi__. pi=$(echo The following is the definition of the exponential function used in the math library. This function is written in POSIX __bc__. scale = 20 /* Uses the fact that e^x = (e^(x/2))^2 When x is small enough, we use the series: e^x = 1 + x + x^2/2! + x^3/3! + ... */ define e(x) { auto a, d, e, f, i, m, v, z /* Check the sign of x. */ if (x The following is code that uses the extended features of __bc__ to implement a simple program for calculating checkbook balances. This program is best kept in a file so that it can be used many times without having to retype it at every use. scale=2 print The following is the definition of the recursive factorial function. define f (x) { if (x __READLINE AND LIBEDIT OPTIONS__ GNU __bc__ can be compiled (via a configure option) to use the GNU __readline__ input editor library or the BSD __libedit__ library. This allows the user to do editing of lines before sending them to __bc__. It also allows for a history of previous lines typed. When this option is selected, __bc__ has one more special variable. This special variable, __history__ is the number of lines of history retained. For __readline__, a value of -1 means that an unlimited number of history lines are retained. Setting the value of __history__ to a positive number restricts the number of history lines to the number given. The value of 0 disables the history feature. The default value is 100. For more information, read the user manuals for the GNU __readline__, __history__ and BSD __libedit__ libraries. One can not enable both __readline__ and __libedit__ at the same time. __DIFFERENCES__ This version of __bc__ was implemented from the POSIX P1003.2/D11 draft and contains several differences and extensions relative to the draft and traditional implementations. It is not implemented in the traditional way using ''dc(1).'' This version is a single process which parses and runs a byte code translation of the program. There is an '' A major source of differences is extensions, where a feature is extended to add more functionality and additions, where new features are added. The following is the list of differences and extensions. LANG This version does not conform to the POSIX standard in the processing of the LANG environment variable and all environment variables starting with LC_. names Traditional and POSIX __bc__ have single letter names for functions, variables and arrays. They have been extended to be multi-character names that start with a letter and may contain letters, numbers and the underscore character. Strings Strings are not allowed to contain NUL characters. POSIX says all characters must be included in strings. last POSIX __bc__ does not have a __last__ variable. Some implementations of __bc__ use the period (.) in a similar way. comparisons POSIX __bc__ allows comparisons only in the if statement, the while statement, and the second expression of the for statement. Also, only one relational operation is allowed in each of those statements. if statement, else clause POSIX __bc__ does not have an else clause. for statement POSIX __bc__ requires all expressions to be present in the for statement. POSIX __bc__ does not have the logical operators. read function POSIX __bc__ does not have a read function. print statement POSIX __bc__ does not have a print statement . continue statement POSIX __bc__ does not have a continue statement. return statement POSIX __bc__ requires parentheses around the return expression. array parameters POSIX __bc__ does not (currently) support array parameters in full. The POSIX grammar allows for arrays in function definitions, but does not provide a method to specify an array as an actual parameter. (This is most likely an oversight in the grammar.) Traditional implementations of __bc__ have only call by value array parameters. function format POSIX __bc__ requires the opening brace on the same line as the __define__ key word and the __auto__ statement on the next line. =+, =-, =*, =/, =%, =^ POSIX __bc__ does not require these __a__ by 1 instead of setting __a__ to the value -1. spaces in numbers Other implementations of __bc__ allow spaces in numbers. For example, __bc__. errors and execution This implementation varies from other implementations in terms of what code will be executed when syntax and other errors are found in the program. If a syntax error is found in a function definition, error recovery tries to find the beginning of a statement and continue to parse the function. Once a syntax error is found in the function, the function will not be callable and becomes undefined. Syntax errors in the interactive execution code will invalidate the current execution block. The execution block is terminated by an end of line that appears after a complete sequence of statements. For example, a = 1 b = 2 has two execution blocks and { a = 1 b = 2 } has one execution block. Any runtime error will terminate the execution of the current execution block. A runtime warning will not terminate the current execution block. Interrupts During an interactive session, the SIGINT signal (usually generated by the control-C character from the terminal) will cause execution of the current execution block to be interrupted. It will display a bc__ is ready for more input. All previously defined functions remain defined and the value of all non-auto variables are the value at the point of interruption. All auto variables and function parameters are removed during the clean up process. During a non-interactive session, the SIGINT signal will terminate the entire run of __bc__. __LIMITS__ The following are the limits currently in place for this __bc__ processor. Some of them may have been changed by an installation. Use the limits statement to see the actual values. BC_BASE_MAX The maximum output base is currently set at 999. The maximum input base is 16. BC_DIM_MAX This is currently an arbitrary limit of 65535 as distributed. Your installation may be different. BC_SCALE_MAX The number of digits after the decimal point is limited to INT_MAX digits. Also, the number of digits before the decimal point is limited to INT_MAX digits. BC_STRING_MAX The limit on the number of characters in a string is INT_MAX characters. exponent The value of the exponent in the raise operation (^) is limited to LONG_MAX. variable names The current limit on the number of unique names is 32767 for each of simple variables, arrays and functions. !!ENVIRONMENT VARIABLES The following environment variables are processed by __bc__: POSIXLY_CORRECT This is the same as the __-s__ option. BC_ENV_ARGS This is another mechanism to get arguments to __bc__. The format is the same as the command line arguments. These arguments are processed first, so any files listed in the environent arguments are processed before any command line argument files. This allows the user to set up __bc__. The files in the environment variables would typically contain function definitions for functions the user wants defined every time __bc__ is run. BC_LINE_LENGTH This should be an integer specifing the number of characters in an output line for numbers. This includes the backslash and newline characters for long numbers. !!DIAGNOSTICS If any file on the command line can not be opened, __bc__ will report that the file is unavailable and terminate. Also, there are compile and run time diagnostics that should be self-explanatory. !!BUGS Error recovery is not very good yet. Email bug reports to __bug-bc@gnu.org__. Be sure to include the word ``bc'' somewhere in the ``Subject:'' field. !!AUTHOR Philip A. Nelson philnelson@acm.org !!ACKNOWLEDGEMENTS The author would like to thank Steve Sommars (Steve.Sommars@att.com) for his extensive help in testing the implementation. Many great suggestions were given. This is a much better product due to his involvement. ----
5 pages link to
bc(1)
:
Man1b
sysconf(3)
apt-move(8)
TwoLetterCommands
BcNotes
This page is a man page (or other imported legacy content). We are unable to automatically determine the license status of this page.